The reduction of carboxymethyl-cytochrome c by chromous ions.

نویسندگان

  • T Brittain
  • M T Wilson
  • C Greenwood
چکیده

The reduction of ferricytochrome c and ferricytochrome c carboxymethylated at the haem-linked methionine (residue 80) by Cr(2+) ions was studied by stopped-flow techniques. At pH6.2 the kinetics of reduction of ferricytochrome c are simple and correspond to a second-order rate constant of 1.21x10(3)m(-1).s(-1). Under identical conditions the kinetics of reduction of the carboxymethyl derivative, carboxymethyl-cytochrome c, are complex; two Cr(2+)-concentration-dependent processes (1.5x10(4)m(-1).s(-1) and 1.3x10(3)m(-1).s(-1)) lead to the formation of an intermediate which decays in monomolecular fashion (0.15s(-1)) to form the normal fully reduced material. The kinetic difference spectrum for the overall process corresponds to that found statically, whereas the kinetic difference spectrum of the intermediate minus the oxidized form resembles that of the low-spin ferrous form of carboxymethyl-cytochrome c minus oxidized carboxymethyl-cytochrome c. A model is proposed in which the reduction of low-spin ferric carboxymethyl-cytochrome c to high-spin ferrous carboxymethyl-cytochrome c involves a low-spin ferrous intermediate. The monomolecular step involving the decay of this low-spin ferrous intermediate is associated with an activation energy of approx. 126kJ.mol(-1) and is thought to involve both a change of spin state and a protein-conformational event. Although carboxymethyl-cytochrome c represents a mixture of species separable on a charge basis, the above observations were independent of which species was chosen for study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetics of the reduction of metalloproteins by chromous ion (laccase-cytochrome c-plastocyanins-temperature-rate constants).

The reduction of Cu(330) in Rhus vernicifera laccase by chromous ion is 30% faster than reduction of Cu(614) at room temperature [pH 4.8, mu = 0.1 (NaCl)], and two parallel first-order paths, attributed to heterogeneity of the protein, are observed at both wavelengths. The reactions of stellacyanin, spinach and French-bean plastocyanins, and cytochrome c with chromous ion under similar conditio...

متن کامل

Electron transfer reactions in biological systems: the reduction of ferricytochrome c by chromous ions.

Chromous ion reacts with ferricytochrome c to yield a one-to-one Cr(III)-ferrocytochrome c complex. This material, when hydrolyzed by trypsin and subjected to chromatographic procedures, yielded two fragments containing chromium. The amino-acid compositions and chemical characteristics of each of these fragments indicated that the chromium had crosslinked two segments of polypeptide chain; thes...

متن کامل

Chromous ion reduction of mammalian cytochrome oxidase and some of its derivatives.

The reduction of cytochrome c oxidase by Cr2+, followed by means of stopped-flow spectrophotometry, exhibits two phases: the faster Cr2+-concentration-dependent reaction has an initial rate constant of 1.1 X 10(4)M-1-S-1, but reaches a rate limit at high concentration of reductant; the slower phase is concentration-independent with a rate of 0.3S-1. The activation energies of the fast and the s...

متن کامل

Cytochrome C and Caspase-3/7 are Involved in Mycophenolic Acid-induced Apoptosis in Genetically Engineered PC12 Neuronal Cells Expressing the p53 Gene

Mycophenolic acid (MPA) is the active metabolite of mycophenolate mofetil. This study designed to investigate the mechanism of cytotoxicity of MPA on the genetically engineered PC12 Tet Off (PTO) neuronal cells with p53 gene. Alamar Blue (AB) reduction showed concentration-dependent cytotoxicity of MPA on PTO cells with IC50 value of 32.32 ± 4.61 mM. The reactive oxygen species (ROS) generation...

متن کامل

Cytochrome C and Caspase-3/7 are Involved in Mycophenolic Acid-induced Apoptosis in Genetically Engineered PC12 Neuronal Cells Expressing the p53 Gene

Mycophenolic acid (MPA) is the active metabolite of mycophenolate mofetil. This study designed to investigate the mechanism of cytotoxicity of MPA on the genetically engineered PC12 Tet Off (PTO) neuronal cells with p53 gene. Alamar Blue (AB) reduction showed concentration-dependent cytotoxicity of MPA on PTO cells with IC50 value of 32.32 ± 4.61 mM. The reactive oxygen species (ROS) generation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 141 2  شماره 

صفحات  -

تاریخ انتشار 1974